
c 0 l 0 • u r 1 n g 

Introduction 

A knot is a circle, possibly knotted in Euclidean 3-space. It is obtained by joining the two 
ends of a piece of knotted string together. In figure 1, examples of knots such as the 

unknot, the trefoil knot and the figure 8 knot are shown. Generally speaking, knot theory 

is the study of how such objects sit in 3-space. 

Unknot Trefoil 

Figure 1 Figure 8 

The first analytical study of knots was probably C. F. Gauss' investigation of electrodynamics 

[3] in 1877. Gauss studied the effect of a knotted electric wire L
1 

on another wire L
2

• He 

discovered that the total electric potential energy induced on L
2 

due to the magnetic field 
created by L

1 
depends only on the so called linking number of the two wires. 

The study of knots is closely related to the study of other geometric objects such as curves 
and surfaces [2], [6]. Recently its impact and connection with physics [1], [4] and DNA 
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research [7] cause much interest and 
attention among mathematicians. A primary 

problem in knot theory is to distinguish 
different knots. For this purpose, two knots 

are considered to be same or equivalent if 

one can be deformed, pulled or stretched 
but without cutting the string, to the other. 

An equivalent definition of this notion will 

be given in section 2. For instance, the two 

knots in figure 2 are considered to be the 

same since they both represent the trefoil 
knot. However the figure 8 knot can be 

shown to be different. 

Figure 2 

There are various approaches to the 

problem of distinguishing knots. One way 
is to look for invariants of knots. Basically, 

if a knot is found to possess a certain 

property which remains unchanged when 
it is deformed to another shape, then such 

a property defines a knot invariant. The 

point is that two knots having distinct 
invariants are different. For example, the 

crossing number of a knot which is the 

minimum number of crossings that the knot 

can have when it is laid on a plane is a 

knot invariant. The trefoil has crossing 
number 3 whereas the figure-8 knot has 

crossing number 4. Classically, there are 
various knot invariants such as the 

unknotting number, the bridge number and 

many of the knot polynomials [6]. 

In this paper, the colourability of knots is 
discussed. One attempts to colour the arcs 

or the overpasses of a knot diagram by using 

3 colours such that at least 2 colours are 
used and at each crossing, either the 3 arcs 

are coloured by one colour or each of them 

is coloured by a different colour. A knot K 
is said to be colourable if a knot diagram 

of K can be coloured by 3 colours as 

described above. It can be proved that if K1 

and K
2 

are equivalent knots and K1 is 

colourable, then K
2 

is colourable. Hence 
colourability is a property of knots or a 

knot invariant. For example, the trefoil can 

be coloured but not the figure-8 knot. By 
definition, the unknot is not colourable. 
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The idea of colouring knots was first 

considered by R. Fox. In [2], Fox showed 

that the colourability of a knot is related to 

the existence of a so called 3-fold irregular 
branched covering of the 3-dimensional 

sphere branched along the knot. Therefore 
in order to understand such objects, it is 

necessary to investigate which knots are 

colourable. The concept of colourability has 
a natural generalization to p-colourability 

with p ~ 3. 

The investigation of this subject is part of 
the project taken by the first author in his 

participation of the Science Research 

Programme 1994. In [8], an elementary 

proof of a necessary and sufficient condition 

for doubled knots to be p-colourable as 

well as an algorithm to colour p-colourable 

doubled knots are presented. 

•Definition 

• Colourability 
/\ knot is <1 closed loop in the Eucl idc<m 

3-space. /\ diagram for a knot K is a 
projection of K onto the plane such that 

all self-intersections are non-tangential 
and ,ue doubk· points only. Caps are left 

in the diagram to indicate which paris of 

the knot pass under other parts. See the 

examples in figure 1. Two knots are said 
to be equivalent if loosely speaking, one 

can be continuously deformed to the 
other. To avoid the notion of continuity, 

there is a combinatorial approach due to 

Reidemeister [6]. 

The following moves applied to a portion of a knot diagram are called Reidemeister moves. 

Theorem 

Two knots are equivalent if and only if their 

diagrams can be transformed to each other 
by a finite sequence of Reidemeister moves. 

The two knot diagrams in figure 2 both 

represent the trefoil knot and they can be 

transformed to each other by applying 
Reidemeister moves. Inequivalent knots can 

be distinguished by many methods. One 

way is to use the colourability of knots. 

Definition 
Let three colours be given. A knot diagram 

is called colourable if each arc can be 

drawn using one of the colours such that 

(i) at least two of the colours are used, 

(ii) at any crossing either the 3 arcs are 
coloured by one colour or each of them 

is coloured by a different colour. 

For example, let the three colours be red 

(R), yellow (Y) and blue (B). The trefoil knot 

has a projection consisting of three arcs 

meeting at three crossings. Hence it can 

easily be coloured by simply drawing each 
arc by one colour. One could try to colour 

the figure-8 knot by 3 colours, but it never 

works. The figure-8 knot is not colourable. 

""" / X X 
/ """ 

Figure 3 

Figure 4 

The fact that colourability is a knot invariant 

is because of the following result. 

Theorem 

If a diagram of a knot K is colourable, then 

every diagram of K is colourable. 

To prove this result, one verifies that if one 

diagram of K can be coloured, then the 
diagram obtained by applying one of the 

Reidemeister moves to it can also be 

coloured. This result shows that 

colourability of knot diagrams is 

independent of the diagram used to 

represent the knot. Hence a knot is said to 

be colourable if one and hence all of its 

diagrams are colourable. More importantly, 
if one knot is colourable while another is 

not, then the two knots are not equivalent. 

Therefore the trefoil knot and the figure-8 
knot are inequivalent. 



Let the three colours be denoted by the 
integers 0, 1, 2. The problem can be reduced 
to solving a system of linear equations in 
Z = { 0, 1, 2 } as follows. Let us label the 

3 

arcs of a given knot diagram of K by the 
variables x, y, z ... The second condition for 
colourability is equivalent to the condition 
that at each crossing the relation x + y = 2z 

(mod 3) should hold, where z is the label 
of the overpass and x and y are the labels 
on the other arcs. 

Therefore a knot diagram of K gives rise to 
a number of linear equations, one for each 
crossing of the diagram. In this setup, K is 
colourable if and only if this system of linear 

equations has a nontrivial solution in Z
3

• 

Note that a trivial solution but not 
necessarily the zero solution, corresponds 
to colouring the diagram by just one colour 
which is not allowed by condition (i). Now 
the problem reduces to solving a system of 
homogeneous linear equations in Z

3
• As an 

example, consider the figure 8 knot. 

X z 

Figure 6 

It gives rise to the following system of linear 
equations. 

2x- y- z = 0 
-X+ 2y- W = 0 
-y + 2z- w = 0 
-x- z + 2w = 0 

Try it on your friends! 

The only solution is x = y = z = w (mod 3). 
Hence the figure 8 knot is not colourable. 
In general in a diagram of a knot K, the 

number of crossings is the same as the 
number of overpasses. Hence the coefficient 
matrix of the system of linear equations 
arising from K is a square matrix. From the 
theory of linear equations, it is known that 
such a system has a nontrivial solution in 
Z if and only if each cofactor of the 

3 

coefficient matrix is congruent to zero 
modulo 3. Moreover a nontrival solution in 
Z corresponds to a colouring of the knot. 

3 

Now the generalization to more than 3 
colours is immediate. Suppose there are p 

colours. A knot diagram is said to be p­
colourable if the system of homogeneous 
linear equations posed by the knot diagram 
has a nontrivial solution in ZP. As long as 
p is a prime, the theory of solving system 
of linear equations is the same as that for 
real numbers. 

Since a knot diagram can be quite arbitrary 
and complicated, it is not clear when each 
cofactor of the coefficient matrix is 
congruent to zero modulo p. It would be 
useful to obtain equivalent conditions in 

terms of other properties of the knot. For 
this, the class of doubled knots is considered 
in next section. 

Doubled knots 
Let K be a knot and n be an integer. In a 
knot diagram of K, take a parallel copy K' 
of K so that K and K' link each other n 
times. Hence n is the linking number 
between K and K'. For some details on 
linking number, see the references [6] and 
[8]. For example, if K is the unknot, then K' 
is just another copy of K linking K in full 

twists. 

An unusual party trick is performed as follows. Ask spectator A to jot down any three­
digit number, and then to repeat the digits in the same order to make a six-digit number 
(i.e, if A chooses 123, then the six-digit number is 123123 ). Tell A not to show you the 
six-digit number. Ask A to pass the six-digit number to spectator B, who is requested to 
divide the number by 7. Tell B not to worry about the remainder because there would 
not be any. B is surprised that you are right (e.g. 123123 divided by 7 is 17589). 
Without telling you the result, B passes it to spectator C who is told to divide it by 11. 
Again you tell him that there is no remainder (e.g. 17589 divided by 11 is 1599). 

With no knowledge whatever of the figures obtained from the computations, you direct 
a fourth spectator to divide the last result by 13. Again the division comes out without 
remainders (e.g. 1599 divided by 13 is 123 ). The final result is written on a slip of paper 
which is folded and handed to you. Without opening you pass it to A. "Open this," you 
tell him, "and you will find your original three-digit number." 

Question: Why does the trick work? 

n = -1 

Figure 7 

K'~ 
n = 2 

Here the twists are right-handed if n is 
positive and are left-handed if n is negative. 
To form a doubled knot, remove a small 
portion of 2 parallel arcs in K and K' and 
replace it by one of the clasps below. 

E = -1 

lcJI 
10] 
E = +1 

Figure 8 

The clasps are identified by their signs. The 

one shown on the left of figure 8 is said to 
have a clasp sign -1, while the clasp sign 
of the one on the right is defined to be + 1. 
The following picture shows four doubled 
knots constructed from the unknot. 

(2) (2) 
n=l,E=-1 n=1,E=l @Figure9@ 
n=-1,€=-1 n=-1,€=1 

The first and the last are the figure-8 knot. 
The second and the third are the left-handed 
trefoi I and the right-handed trefoi I 

respectively. 

Therefore, given a knot K, an integer n and 
E = ± 1, a doubled knot can be constructed 
as described above. The integer n is often 
called the framing of the construction. The 
main result in [8] is the following. 

Theorem 

Let K be a knot and p be an odd prime. 
Then the doubled knot formed by K with 
framing n and with clasp sign E is p­
colourable if and only if 4n = E (mod p). 
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The proof is constructive. The doubled knot 
is first divided into small sections. We start 
by colouring one of the sections. Recall 
that each colour is regarded as an element 
in ZP. A key observation in the proof is that 
the difference of the colours of the two 

parallel arcs in eac~ section is a constant 
modulo p. This enables us to keep track of 
the changes in colour as we proceed along 
the knot. When we come to the last section 
which joins to the starting section, the 
colours of the connecting ends should 
match and this gives the condition that 

4n = E (mod p). 

Corollary 

A doubled knot is p-colourable for some 
odd prime p if and only if its framing is 
non-zero. 

As an example, the doubled knot in figure 
10 is 3-colourable. Readers may check that 
the condition in the theorem for this knot 
is satisfied. An explicit colouring of this knot 
is also shown in figure 10. 
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This article is based on a project 

undertaken by Wee Hoe Teck in the 

Science Research Programme 1994 

under the supervision of Dr Wong Yan Loi 
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